Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Comput Biol ; 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2134694

ABSTRACT

Single-step nonadaptive group testing approaches for reducing the number of tests required to detect a small subset of positive samples from a larger set require solving two algorithmic problems. First, how to design the samples-to-tests measurement matrix, and second, how to decode the results of the tests to uncover positive samples. In this study, we focus on the first challenge. We introduce real-valued group testing, which matches the characteristics of existing PCR testing pipelines more closely than combinatorial group testing or compressed sensing settings. We show a set of conditions that allow measurement matrices to guarantee unambiguous decoding of positives in this new setting. For small matrix sizes, we also propose an algorithm for constructing matrices that meet the proposed condition. On simulated data sets, we show that the matrices resulting from the algorithm can successfully recover positive samples at higher positivity rates than matrices designed for combinatorial group testing setting. We use wet laboratory experiments involving SARS-CoV-2 nasopharyngeal swab samples to further validate the approach.

2.
JCI Insight ; 6(15)2021 08 09.
Article in English | MEDLINE | ID: covidwho-1286768

ABSTRACT

Immune dysregulation is characteristic of the more severe stages of SARS-CoV-2 infection. Understanding the mechanisms by which the immune system contributes to COVID-19 severity may open new avenues to treatment. Here, we report that elevated IL-13 was associated with the need for mechanical ventilation in 2 independent patient cohorts. In addition, patients who acquired COVID-19 while prescribed Dupilumab, a mAb that blocks IL-13 and IL-4 signaling, had less severe disease. In SARS-CoV-2-infected mice, IL-13 neutralization reduced death and disease severity without affecting viral load, demonstrating an immunopathogenic role for this cytokine. Following anti-IL-13 treatment in infected mice, hyaluronan synthase 1 (Has1) was the most downregulated gene, and accumulation of the hyaluronan (HA) polysaccharide was decreased in the lung. In patients with COVID-19, HA was increased in the lungs and plasma. Blockade of the HA receptor, CD44, reduced mortality in infected mice, supporting the importance of HA as a pathogenic mediator. Finally, HA was directly induced in the lungs of mice by administration of IL-13, indicating a new role for IL-13 in lung disease. Understanding the role of IL-13 and HA has important implications for therapy of COVID-19 and, potentially, other pulmonary diseases. IL-13 levels were elevated in patients with severe COVID-19. In a mouse model of the disease, IL-13 neutralization reduced the disease and decreased lung HA deposition. Administration of IL-13-induced HA in the lung. Blockade of the HA receptor CD44 prevented mortality, highlighting a potentially novel mechanism for IL-13-mediated HA synthesis in pulmonary pathology.


Subject(s)
COVID-19/immunology , Interleukin-13/immunology , SARS-CoV-2/immunology , Animals , COVID-19/blood , COVID-19/pathology , COVID-19/therapy , Disease Models, Animal , Disease Progression , Female , Humans , Interleukin-13/blood , Lung/immunology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL